On the Derived Functor Analogy in the Cuntz-quillen Framework for Cyclic Homology

نویسنده

  • GUILLERMO CORTIÑAS
چکیده

Cuntz and Quillen have shown that for algebras over a field k with char(k) = 0, periodic cyclic homology may be regarded, in some sense, as the derived functor of (non-commutative) de Rham (co-)homology. The purpose of this paper is to formalize this derived functor analogy. We show that the localization DefPA of the category PA of countable pro-algebras at the class of (infinitesimal) deformations exists (in any characteristic) (Theorem 3.2) and that, in characteristic zero, periodic cyclic homology is the derived functor of de Rham cohomology with respect to this localization (Corollary 5.4). We also compute the derived functor of rational K-theory for algebras over Q, which we show is essentially the fiber of the Chern character to negative cyclic homology (Theorem 6.2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brs-chern-simons Forms and Cyclic Homology

We use some BRS techniques to construct Chern-Simons forms generalizing the Chern character of K1 groups in the Cuntz-Quillen description of cyclic homology. MSC91: 19D55, 81T13, 81T50

متن کامل

Properties of the boundary map in cyclic cohomology

We show that the boundary map in periodic cyclic cohomology introduced by Cuntz and Quillen satisfies properties similar to the properties of the boundary map in simplicial homology. We also prove that the boundary map is compatible with the boundary map in algebraic and topological K-Theory, which leads to index theorems. As an application we obtain a new proof of the Connes-Moscovici index th...

متن کامل

Equivariant Periodic Cyclic Homology

We define and study equivariant periodic cyclic homology for locally compact groups. This can be viewed as a noncommutative generalization of equivariant de Rham cohomology. Although the construction resembles the Cuntz-Quillen approach to ordinary cyclic homology, a completely new feature in the equivariant setting is the fact that the basic ingredient in the theory is not a complex in the usu...

متن کامل

On a Cuntz-Krieger functor

Let M be a torus bundle, i.e. an (n + 1)-dimensional manifold, which fibers over the circle with the fiber an n-dimensional torus. A covariant functor from M to the Cuntz-Krieger algebra (a C∗-algebra) is constructed. The functor maps homeomorphic torus bundles to the stably isomorphic Cuntz-Krieger algebras. It is shown that in general the K-theory of the Cuntz-Krieger algebra counts the torsi...

متن کامل

Homological Properties of Non-deterministic Branchings and Mergings in Higher Dimensional Automata

The branching (resp. merging) space functor of a flow is a left Quillen functor. The associated derived functor allows to define the branching (resp. merging) homology of a flow. It is then proved that this homology theory is a dihomotopy invariant and that higher dimensional branchings (resp. mergings) satisfy a long exact sequence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998